Guia de Auditoria, Seguridad de la Informacion y Ciberseguridad N°8

DESARROLLO SEGURO

DE SOFTWARE




INDICE

indice

Nota: Presentacion

Capitulo 1: Introduccién al Desarrollo Seguro de Software

Capitulo 2: Metodologias del Ciclo de Desarrollo de Software

Capitulo 3: DevOps: Un Enfoque Detallado en el Ciclo de Desarrollo de Software

Capitulo 4: Marco Normativo y Estandares de Referencia

Capitulo 5: Importancia de la Seguridad en el SDLC
5.1 Planeacién y Definicion de Requisitos

5.2 Herramientas y Entornos de Desarrollo

5.3 Pruebas, Verificacion y Mantenimiento

5.4 Codificacion y Proteccion de Software

Capitulo 6: Uso de la Guia para la Auditoria Interna

12

14
16
17
17

17

19



Presentacion

Nota
PRESENTACION

En cumplimiento con las instrucciones del Presidente de la Republica, Gabriel Boric Font, sobre fortalecimiento de |la Politica de Auditoria Interna
de Gobierno; el Consejo de Auditoria Interna General de Gobierno, entidad asesora en materias de auditoria interna, control interno, probidad,
gestion de riesgos y gobernanza del Supremo Gobierno, presenta a la Red de Auditoria Gubernamental, la GASIC N°8: Desarrollo Seguro de
Software.

Esta guia es parte de una iniciativa del Consejo de Auditoria Interna General de Gobierno (CAIGG) que busca fortalecer la posicion del sector
publico en materias de Seguridad de la Informacién y Ciberseguridad, dotando de instrumentos a los Auditores Internos y Servicios Publicos de
instrumentos y herramientas que permitan desarrollar un levantamiento de informacion en base a las mejores practicas y la legislacion vigente.

Santiago, Mayo 2024.

Daniela Caldana Fulss
Auditora General de Gobierno




Capitulo 1

INTRODUCCION AL
DESARROLLO SEGURO
DE SOFTWARE

En el contexto actual, donde la ciberseguridad se ha convertido
en una preocupacion primordial, el desarrollo seguro de
software emerge como una disciplina critica para proteger los
sistemas y datos sensibles de las organizaciones
gubernamentales. La creciente sofisticaciéon de las amenazas
cibernéticas y la dependencia de sistemas digitales para
operaciones criticas requieren un enfoque rigurosoy sistematico
para asegurar que el software desarrollado y adquirido sea
intrinsecamente seguro.

El desarrollo seguro de software no es un proceso aislado, sino
gue debe integrarse a lo largo de todo el ciclo de vida del
desarrollo, desde la concepcidon y planificacion hasta el
despliegue y mantenimiento. Este enfoque integral garantiza que
cada etapa del proceso de desarrollo considere y mitigue los
riesgos de seguridad, promoviendo laresilienciay la confianza en
los sistemas de informacion

El Ciclo de Desarrollo de Software: Un Analisis Detallado

\'I

= 0 = Nota Importante

Estrictamente hablando, Seguridad de la Informaciony
Ciberseguridad son dos conceptos diferentes.

La “Seguridad de la Informacion” es la preservacién de la
Confidencialidad, Integridad y Disponibilidad de |a
Informacion en los activos de informacion, en cualquier
medio (incluso, las personas); por otro lado “Ciberseguridad”
hace referencia exclusiva al ciberespacio y activos digitales.

En esta guia adoptamos el concepto de “Seguridad de |a
Informacion y Ciberseguridad”, pero para evitar la
redundanciay el exceso de texto, utilizaremos los conceptos
de “Seguridad de la Informacion”, “Ciberseguridad” o el
acronimo “SIC” como sinébnimos para mejorar la comprension

lectora.

El ciclo de desarrollo de software, también conocido como ciclo de vida del desarrollo de software (SDLC, por sus siglas en inglés), es un
marco que define las fases que un proyecto de software sigue desde su inicio hasta su finalizacion. Este ciclo es esencial para la creacién
de software de alta calidad que cumpla con los requisitos del cliente y sea seguro, eficiente y mantenible. A continuacién, se presenta un
analisis detallado de las fases del SDLC, sus metodologias, y la importancia de cada una en el contexto del desarrollo seguro de software.

Fases del Ciclo de Desarrollo de Software

El SDLC se compone de varias fases clave, cada una de las cuales desempena un papel crucial en el desarrollo del software.
Aunque los detalles pueden variar dependiendo de la metodologia especifica utilizada, las fases comunes incluyen:

1. Planificaciény Analisis de Requisitos

7. Disefo del Sistema

3. Desarrolloy Codificacién

4. Pruebas

5. Despliegue

6. Mantenimiento y Soporte




1. Planificacion y Analisis de Requisitos

La fase de planificacion es la etapa inicial del SDLC, donde se define el alcance del proyecto y se identifican los objetivos principales.

Durante esta fase, se lleva a cabo un anélisis detallado de los requisitos del cliente y del sistema, incluyendo requisitos funcionales y
no funcionales. Es fundamental involucrar a todas las partes interesadas para asegurar que se entienden claramente las expectativas
y restricciones del proyecto.

En el contexto del desarrollo seguro de software, esta fase debe incluir la identificacién de requisitos de seguridad especificos, tales
como la proteccién de datos, la gestion de identidades y accesos, y la conformidad con normativas y estandares de seguridad.

2. Diseno del Sistema

En la fase de diseno, se crea una arquitectura detallada del sistema que cumple con los requisitos definidos. Esta arquitectura abarca tanto
el diseno del software como el hardware necesario para soportarlo. Se desarrollan diagramas de flujo, modelos de datos y otros documentos
técnicos que guian la implementacion del sistema.

El diseno seguro del software debe considerar principios como la defensa en profundidad, el principio del minimo privilegio y la separacion
de funciones. También es crucial definir controles de seguridad que se integren en la arquitectura del sistema.

3. Desarrollo y Codificacion

La fase de desarrollo es donde se escribe el cddigo del software siguiendo el diseno establecido. Los desarrolladores traducen los diagramas
y especificaciones técnicas en un lenguaje de programacion especifico. Es durante esta fase que se construye el nicleo funcional del software.

Para garantizar la seguridad del software, es esencial seguir practicas de codificacion segura, como la validacion de entradas, la gestion
adecuada de errores y excepciones, y la utilizacion de bibliotecas y componentes seguros. La revision de cédigo y la aplicacion de analisis
estaticos y dinamicos son practicas recomendadas para identificar y mitigar vulnerabilidades durante esta fase.

4. Pruebas

La fase de pruebas es critica para asegurar que el software funciona segun lo previsto y que cumple con los requisitos especificados. Las
pruebas pueden incluir pruebas unitarias, pruebas de integracion, pruebas del sistema y pruebas de aceptacion del usuario. Cada tipo de
prueba tiene como objetivo detectar errores y garantizar que el software es robusto y fiable.

Las pruebas de seguridad, como las pruebas de penetracion y los analisis de vulnerabilidades, son componentes esenciales de esta fase.
Estas pruebas ayudan a identificar posibles fallos de seguridad antes de que el software sea desplegado en un entorno de produccion.

5. Despliegue

Una vez que el software ha pasado todas las pruebas y ha sido aprobado, se despliega en el entorno de produccion. La fase de despliegue
puede implicar la instalacion del software en los servidores, la configuracion del entorno y la capacitaciéon de los usuarios finales.

El despliegue seguro del software debe incluir la implementacion de controles de acceso, la configuracion segura del entorno vy la
preparacion de planes de respuesta ante incidentes. Es fundamental asegurarse de que todas las dependencias y componentes del sistema
estén actualizados y configurados adecuadamente.

6. Mantenimiento y Soporte

El mantenimiento es la fase final del SDLC, pero no por ello menos importante. Incluye la correccion de errores que no fueron detectados
durante las pruebas, la implementacion de nuevas funcionalidades y la actualizacidon del software para adaptarse a cambios en el entorno o
en los requisitos del usuario.

El mantenimiento seguro del software requiere una gestién continua de vulnerabilidades, la aplicacién regular de parches de seguridad y la
realizacion de auditorias de seguridad periddicas. También es esencial monitorear el software en busca de comportamientos anémalos y
responder rapidamente a cualquier incidente de seguridad.




Capitulo 2: Metodologias del Ciclo de Desarrollo de Software

Capitulo 2

METODOLOGIAS DEL CICLO
DE DESARROLLO DE SOFTWARE




2. METODOLOGIAS DEL CICLO DE DESARROLLO DE SOFTWARE

Existen varias metodologias que guian el SDLC, cada una con sus propias ventajas y desventajas. Las mas comunes incluyen:

Cascada (Waterfall)

La metodologia en cascada es un enfoque secuencial donde cada fase del SDLC debe completarse antes de pasar a la siguiente.
Aungue es facil de entender y gestionar, puede ser rigida y no permite cambios faciles una vez que una fase ha concluido.

Agile

Agile es una metodologia iterativa y flexible que promueve el desarrollo incremental y la colaboracién constante con el cliente. Las
fases del SDLC se repiten en ciclos cortos llamados "sprints", lo que permite adaptarse rapidamente a los cambios en los requisitos.

DevOps

DevOps es una practica que combina el desarrollo de software (Dev) y las operaciones de Tl (Ops) para mejorar la colaboraciény la
eficiencia. DevOps enfatiza la automatizacion y la integracion continua, lo que permite una entrega de software mas rapida y fiable.

Metodologia Descripcion Ventajas Desventajas
Cascada Enfoque secuencial donde cada Claridad y estructura. Rigidez;
(Waterfall) fase debe completarse antes de Documentacién extensa; Riesgo de problemas tardios;
pasar ala siguiente. Facilidad de gestion Poca flexibilidad
Metodologia iterativay flexible Flexibilidad; Falta de documentacion formal;
Agile con ciclos cortos llamados Colaboracion y comunicacién; Requiere disciplina;
‘Sprints’. Entrega continua. Incertidumbre.
Practica que combina desarrolloy Entregarapiday continua; Complejidad inicial;
DevOps operaciones para mejorar la Mejora la colaboracion; Cambio cultural;

colaboracion y eficiencia.

Alta fiabilidad.

Requiere alta automatizacion.

“@- Nota Importante

Caracteristicas

Rigidez

Negociacion de Contrato
Procesos y Herramientas
Documentacion Comprensiva
Seguimiento al Plan
Procesos muy Controlados

Grupos de Gran Tamano

Existen otras metodologias de desarrollo de software, pero no es el alcance de esta guia su anélisis.

METODOLOGIA
TRADICIONAL

/ \
o
Q Q

S Ve

R/ \©

/ \

\
/ \
Y, \

Alcance

Alcance

Caracteristicas

Flexibilidad

Colaboracion del Cliente
Personas e Interaccion
Software Funcionando
Adaptarse alos Cambios
Procesos menos Controlados

Grupos Pequenos In-situ




Capitulo 3: DevOps, Un Enfoque Detallado en el Ciclo de Desarrollo de Software

Capitulo 3

DEVOPS: UN ENFOQUE DETALLADO ENEL
CICLO DE DESARROLLO DE SOFTWARE




3. DEVOPS: ENFOQUE DETALLADO DEL CICLO DE DESARROLLO DE
SOFTWARE

En el dindmico panorama tecnoldégico actual, DevOps ha emergido como una practica revolucionaria que integra el desarrollo de software (Dev) y
las operaciones de Tl (Ops). Este enfoque tiene como objetivo mejorar la colaboracion, la eficiencia y la velocidad de entrega mediante la
automatizaciony la integraciéon continua.

Principios Fundamentales de DevOps

DevOps se basa en varios principios clave que transforman la manera en que se desarrollan y gestionan las aplicaciones:

Colaboracion y Comunicacion
O ]_ La esencia de DevOps radica en la estrecha colaboracion entre los equipos de desarrollo y operaciones.
Esta metodologia rompe los silos tradicionales, promoviendo una comunicacion fluida y alineacion de objetivos.

Automatizacion

La automatizacion es el pilar central de DevOps, permitiendo acelerar los procesos de desarrollo, pruebasy
02 despliegue. Las herramientas de integracion y entrega continua (ClI/CD) automatizan la construccion, pruebay

despliegue del software, garantizando una entrega rapida y eficiente.

Integracion Continua (Cl)

La integracion continua implica la integracion frecuente del codigo de todos los desarrolladores en un repositorio
03 compartido. Cada integracion se verifica automaticamente mediante pruebas unitarias y de integracion, asegurando

qgue el nuevo cédigo no rompa la funcionalidad existente.

Entrega Continua (CD)

La entrega continua extiende la integracion continua al despliegue automatico de cada cambio que pasa las pruebas
04 en un entorno de produccion. Esto permite que el software sea entregado a los usuarios finales de manera rapiday

frecuente, con minimas interrupciones.

Monitoreo y Registro Continuo
El monitoreo continuo de aplicaciones e infraestructura permite la deteccidn proactiva de problemas.

05 Los registros detallados ayudan a identificar y resolver problemas rapidamente, mejorando la estabilidad y el
rendimiento del software.

Infraestructura como Cadigo (1aC)
06 |aC permite gestionar y aprovisionar la infraestructura mediante scripts de configuracion automatizados, en lugar de
procesos manuales.




Capitulo 3: DevOps, Un Enfoque Detallado en el Ciclo de Desarrollo de Software

Desarrollo Iterativo vs Incremental

1 2 3

£Y EE
BB B8

La adopcion de DevOps ofrece multiples beneficios que transforman positivamente el ciclo de desarrollo de software:

Incremental

Cuatro Flores
Rosadas Sobre
Fondo Gris

-
®

Iterativo

Beneficios de DevOps

1. Velocidad y Agilidad

DevOps permite ciclos de desarrollo mas cortos y tiempos de entrega mas rapidos, facilitando la respuesta agil
a las necesidades del mercado y del cliente. La capacidad de implementar cambios rapidamente reduce el
tiempo de comercializacion y mejora la competitividad.

2. Calidad y Fiabilidad

Las practicas de pruebas automatizadas y el monitoreo continuo aseguran que el software sea robusto y fiable.
La integracidon continua detecta errores en las primeras etapas del desarrollo, reduciendo los defectos en |la
produccion.

3. Escalabilidad y Consistencia

laC y la automatizacion aseguran que la infraestructura sea escalable y consistente, facilitando la gestion de
entornos grandes y complejos. Los entornos reproducibles eliminan los problemas relacionados con
configuraciones inconsistentes.

4. Colaboracion y Responsabilidad

DevOps mejora la colaboracién entre equipos, promoviendo una cultura de responsabilidad compartida por la
calidad y el éxito del producto. Las practicas colaborativas y la transparencia en los procesos fomentan un
sentido de propiedad y compromiso entre los miembros del equipo.

10



Capitulo 3: DevOps, Un Enfoque Detallado en el Ciclo de Desarrollo de Software

Herramientas y Tecnologias DevOps

Diversas herramientas facilitan la implementacién de DevOps, cada una con un propdsito especifico:

1. Control de Versiones

® Git: Sistema de control de versiones distribuido que facilita la gestion del cédigo fuente y la colaboracion entre desarrolladores.

® Subversion (SVN): Alternativa a Git, mas tradicional y centralizado.

2. Integracion y Entrega Continua

o Jenkins: Herramienta de automatizacién de codigo abierto que soporta CI/CD.
o Travis Cl: Servicio de Cl basado en la nube para proyectos alojados en GitHub.
o CircleCl: Plataforma de CI/CD que automatiza la construccién, prueba y despliegue de software.

3. Gestion de Configuracion e Infraestructura como Cédigo

o Terraform: Herramienta de laC que permite la provision de infraestructura en multiples proveedores de servicios en la nube.
o Ansible: Plataforma de automatizacion de Tl que gestiona la configuraciéon y el despliegue de aplicaciones.
o Chef/Puppet: Herramientas de gestién de configuracion que automatizan la configuracién y administracién de servidores.

4. Monitoreo y Registro

o Prometheus: Sistema de monitoreo y alerta disefiado para la fiabilidad y la escalabilidad.

® ELK Stack (Elasticsearch, Logstash, Kibana): Conjunto de herramientas para busqueda, andlisis y visualizacion de datos generados por
magquinas en tiempo real.

o Grafana: Plataforma de cédigo abierto para la visualizacion y analisis de datos.

11



Capitulo 4: Marco Normativo y Estdndares de Referencia

Capitulo 4

4. MARCO NORMATIVO Y
ESTANDARES DE REFERENCIA

12



4. MARCO NORMATIVO Y ESTANDARES DE REFERENCIA

Para guiar este proceso, existen multiples estandares y marcos de referencia que proporcionan directrices y mejores practicas. Entre los mas
reconocidos se encuentran ISO/IEC 27034, OWASP Software Assurance Maturity Model (SAMM), y el NIST Special Publication 800-218,
también conocido como Secure Software Development Framework (SSDF).

ISO/IEC 27034

La norma ISO/IEC 27034 proporciona un marco comprensivo para integrar la seguridad en el proceso de desarrollo de software. Este estandar
define un conjunto de practicas organizativas, documentales y técnicas que ayudan a las organizaciones a asegurar que sus aplicaciones de
software son desarrolladas con la seguridad en mente. La ISO/IEC 27034 enfatiza la importancia de considerar la seguridad desde las etapas
iniciales del desarrollo, estableciendo controles y medidas que deben ser implementadas de manera continua.

OWASP SAMM

El OWASP Software Assurance Maturity Model (SAMM) es un modelo de madurez que permite a las organizaciones evaluar y mejorar sus
practicas de desarrollo de software seguro. SAMM proporciona un enfoque estructurado para medir el estado actual de las practicas de seguridad
del software y planificar mejoras. El modelo se organiza en varias categorias, incluyendo gobernanza, diseno, implementacién, verificaciéon y
despliegue, cada una con actividades especificas que promueven la seguridad en el desarrollo.

NIST SP 800-218 (SSDF)

EI NIST Special Publication 800-218, también conocido como Secure Software Development Framework (SSDF), ofrece un conjunto de practicas
de desarrollo seguro que las organizaciones pueden integrar en sus procesos de desarrollo de software. El SSDF proporciona directrices
detalladas sobre como gestionar la seguridad a lo largo del ciclo de vida del desarrollo de software, incluyendo la planificacion, implementacion,
verificacidon y respuesta a incidentes. Este marco es particularmente relevante para las organizaciones gubernamentales, ya que se alinea con las
politicas y requisitos de seguridad federales.

Relevancia para los Auditores Gubernamentales

Para los auditores gubernamentales, la comprensiéon y evaluacion de las practicas de desarrollo seguro de software es esencial para garantizar la
proteccion de los sistemas y datos criticos. La aplicacion de estos estandares y marcos de referencia permite a los auditores verificar que las
organizaciones estan adoptando medidas adecuadas para mitigar los riesgos de seguridad. Ademas, proporciona un lenguaje comun y un conjunto
de expectativas que facilitan la comunicacion y la colaboracion entre equipos de desarrollo, seguridad y auditoria.

13



Capitulo 5: Importancia de la Seguridad en el SDLC

Capitulo 5

IMPORTANCIADE LA
SEGURIDAD EN EL SDLC

14



5. IMPORTANCIA DE LA SEGURIDAD EN EL SDLC

La integracion de la seguridad en cada fase del SDLC es esencial para desarrollar software robusto y resistente a ataques. Para esta guia,
considerando las fuentes seleccionadas, se han definido un conjunto de temas que no son excluyentes de nuevas tendencias o futuras
actualizaciones. Estos temas son:

3§ 3§ 3 3

Planeacion y Definicion de Requisitos
Definicion del Proceso, Definicion de Requisitos de Seguridad, Funciones y Responsabilidades.

Herramientas y Entornos de Desarrollo
Cadenas de Soporte, Implementacion de Entornos Seguros, Arquitectura de Software: Construccion, Despliegue y Seguimiento.

Pruebas, Verificacion y Mantenimiento
Pruebas y Verificacion, Revision y Evaluacion Continua de Vulnerabilidades, Funcionalidad de Software Existente.

Codificacion y Proteccion de Software
Codificacion Segura, Protecciéon del Cédigo y Software, Seguridad del Software.

Cada uno de estos temas esta desarrollado en la Matriz de Controles de esta Guia, y su principal contenido se describe a continuacion:

Fases
SDLC

Tareas
Hechas

Posibles
Problemas
Seguridad

]

Requrimiento Disero Programacion Pruebas e Integracion Lanzamiento
Comienzo Identificar los Elegir un Lenguaje Iniciar Mantenimiento
Activos de Disefio de Programacion Pruebas Correctivo
Obtencid Al?stra(?r Clasificaciones Pruebas del Mantenimiento
encion Especificaciones de Médulo Sistema Adaptativo
s Disefio de Elegir Herramientas Pruebas de Mantenimiento
Elaboracion ' - . .
Componentes de Programacion Aceptacion de Perfeccionamiento
o Disefio de Considerar las Pruebas de Mantenimiento
Negociacion Interface Opciones de Reutilizacion Integracion Preventivo
Diseno de

Especificaciones

Base de Datos

Validacion

Gestion

e Comprension
Compartida de los
Requisitos.

e Obtencidonde
Requisitos de
Seguridad.

e Faltade Defensa
en Profundidad.

e Faltade Conciencia
de Seguridad.

® Establecer Requisitos
Seguridad del Diseno

@ Evaluar Riesgos de
los Componentes de
Terceros

@ Trazabilidad

@ Control de Accesos

e Faltade Defensa
en Profundidad.

e Faltade Conciencia
de Seguridad.

@ Defectos de Diseno

® Desbordamiento
del Buffer

® Fallade Inyeccion
de Codigo

® FaltadeUso

® Practicasde
Codificacion Segura

® Faltade Seguridad
® Conciencia

@ Evaluar Riesgosde
los Componentes de
Terceros

® Seleccidnde
Herramientas

® Utilizar Mdultiples
Enfoques

® Aceptaciony
Resistencia

® Problemasde
Cumplimiento

® Presupuestoy
Tiempo

® Restricciones

® Riesgos Técnicos

® Posibilidad de
Mala Configuracion

® Posibilidad de
Defectos

15



Requrimiento Diseno Programacion Pruebas e Integracion Lanzamiento
@ Todas las Partes Economiade ® Codificacion Segura ® Pruebase Integracion | ® Procesode Gestion
Mecanismo Seguras de Cambios de

Interesadas Deben
Estar de Acuerdo con
las Definiciones de
Requisitos

o |dentificar Activos
Vulnerablesy Criticos

e ldentificarlas
Dependencias de

Falso - Seguro
por Defecto

Control de Accesos
Minimos Privilegios

Mecanismos Menos
Comunes

® OSWAP Practicasde
Codificacion Seguray
Lista de Verificacion

® OSWAP Practicasde
Codificacion General

® Programacionde
Pares

® Los Casos de Prueba
Deben ser Generados
en Base ala Salidade
la Fase RE

® Pruebas Funcionales

® Pruebas No

Documentos

® Seguir el Procesode
Gestion de Cambios

® Planificar Recursos
de Apoyo

Requisitos Funcionales

e Aceptabilidad

Psicologica ® Pruebasde

Integracion

® |dentificar Amenazas

Prdcticas

® Desarrollar los
Artefactos
Correspondientes

® Defensaen

Mitigacion
Profundidad

® Obtener Requisitos | © Revision de Diseno

de Seguridad

® Realizar Requisitos
Priorizaciony
Clasificacion

® Realizar Requisitos
de Inspeccidén

® Actualizar el
_ Repositorio de
Requerimientos

llustracion 1 Esquema General de Identificacion de Requisitos

5.1 PLANEACION Y DEFINICION DE REQUISITOS

Definicion del Proceso

El proceso de desarrollo de software comienza con una planificacion meticulosa. Esta fase inicial es crucial, ya que establece el rumbo del proyecto.
Aqui, se delinean los objetivos, se identifican los recursos necesarios y se elaboran los cronogramas. Una planificacion efectiva no solo se enfoca
en los aspectos técnicos, sino que también considera las necesidades y expectativas del cliente. Se trata de una fase donde la comunicacién abierta
y clara con todas las partes interesadas es fundamental para asegurar que todos los involucrados comprendan el alcance y los objetivos del
proyecto.

Definicion de Requisitos de Seguridad

Definir los requisitos de seguridad desde el principio es esencial para proteger los datos y las operaciones de los usuarios finales. Estos requisitos
deben ser especificos y detallados, abordando aspectos como la proteccion de datos sensibles, la autenticacion de usuarios y la resistencia a
ataques externos. La inclusién de expertos en seguridad durante esta fase es vital para identificar posibles vulnerabilidades y desarrollar
estrategias para mitigarlas. Este enfoque proactivo ayuda a prevenir problemas de seguridad que podrian surgir mas adelante en el ciclo de
desarrollo.

Funciones y Responsabilidades

Asignar roles y responsabilidades claras dentro del equipo de desarrollo es esencial para el éxito del proyecto. Cada miembro del equipo debe
conocer sus responsabilidades y entender cdmo su trabajo contribuye al objetivo final. Esto incluye no solo a los desarrolladores, sino también a
los gerentes de proyecto, analistas de negocios, ingenieros de seguridad y demas stakeholders. Un organigrama bien definido y una comunicacion
constante aseguran que todas las tareas criticas se manejen de manera eficiente y que cualquier problema se pueda abordar rapidamente.

16




5.2 HERRAMIENTAS Y ENTORNOS DE DESARROLLO

Herramientas y Cadenas de Soporte

El uso de herramientas adecuadas en el desarrollo de software puede marcar una gran diferencia en la eficiencia y calidad del producto final. Las
herramientas de gestion de versiones, integracion continua y automatizacion de pruebas son esenciales para mantener el cédigo limpio y
funcional. Ademas, las herramientas de seguimiento de errores y gestion de proyectos ayudan a los equipos a mantenerse organizados y
enfocados. La eleccion correcta de estas herramientas debe basarse en las necesidades especificas del proyecto y en la experiencia del equipo con
dichas herramientas.

Implementacion de Entornos Seguros

Crear entornos seguros para el desarrollo y prueba es fundamental para proteger el cddigo y los datos durante el ciclo de vida del proyecto. Esto
implica no solo asegurar los servidores y redes, sino también implementar politicas de acceso estrictas y utilizar herramientas de cifrado. Los
entornos de desarrollo deben ser lo mas similares posible a los entornos de produccion para evitar sorpresas al desplegar el software. Ademas, es
importante realizar auditorias de seguridad periédicas para identificar y corregir posibles vulnerabilidades.

Arquitectura de Software: Construccion, Despliegue y Seguimiento

La arquitectura del software es la columna vertebral de cualquier aplicacion exitosa. Una buena arquitectura debe ser escalable, flexible y facil de
mantener. Durante la fase de construccion, es crucial seguir principios de disefio solidos y mejores practicas de codificacion. El despliegue debe ser
automatizado para minimizar errores humanos y asegurar una entrega rapida y fiable. El seguimiento continuo de la aplicacion, mediante
herramientas de monitoreo, permite detectar y resolver problemas en tiempo real, garantizando asi un rendimiento éptimo y una alta
disponibilidad.

5.3 PRUEBAS, VERIFICACION Y MANTENIMIENTO

Pruebas y Verificacion

Las pruebas y la verificacion son etapas criticas en el ciclo de desarrollo de software. Las pruebas unitarias, de integracion y de sistema aseguran
que cada componente del software funcione correctamente y que todos los componentes interactiien de manera adecuada. Las pruebas de
aceptacion por parte del usuario final validan que el software cumple con los requisitos especificados. Ademas, las pruebas de seguridad ayudan a
identificar vulnerabilidades que podrian ser explotadas por atacantes. Un enfoque sistematico y exhaustivo en las pruebas es vital para garantizar
un software de alta calidad y libre de errores.

Revision y Evaluacion Continua de Vulnerabilidades

La seguridad del software no es un evento Unico, sino un proceso continuo. Las revisiones periddicas y la evaluacion constante de vulnerabilidades
son esenciales para mantener la seguridad del software a lo largo del tiempo. Esto incluye realizar auditorias de codigo, pruebas de penetraciony
analisis de vulnerabilidades regularmente. Ademas, es importante mantenerse actualizado con las uUltimas amenazas y técnicas de ataque para
poder adaptar las medidas de seguridad en consecuencia. Laimplementacion de programas de divulgacion de vulnerabilidades también puede ser
beneficiosa paraidentificar y corregir problemas rapidamente.

Funcionalidad de Software Existente

El mantenimiento del software existente es tan importante como el desarrollo de nuevas funcionalidades. Esto implica no solo corregir errores y
aplicar parches de seguridad, sino también mejorar y optimizar el rendimiento del software. La monitorizacion continuay la retroalimentacion de
los usuarios son esenciales para identificar areas de mejora. Ademas, es crucial planificar y gestionar las actualizaciones de software de manera
gue minimicen la interrupcién del servicio y aseguren la continuidad del negocio.

5.4 CODIFICACION Y PROTECCION DE SOFTWARE

Codificacion Segura

La codificaciéon segura es fundamental para prevenir vulnerabilidades que puedan ser explotadas por atacantes. Esto incluye seguir practicas de
codificacion seguras, como la validacion de entradas, la gestion adecuada de errores y excepciones, y la implementaciéon de controles de acceso
adecuados. Los desarrolladores deben ser conscientes de las amenazas comunes y como mitigarlas mediante técnicas de codificacion. La
educacioén continuay la formacion en seguridad son esenciales para mantener un alto nivel de competencia en este campo.

17



Capitulo 5: Importancia de la Seguridad en el SDLC

Proteccion del Codigo y Software

Proteger el codigo fuente y el software contra el acceso no autorizado y la manipulacién es crucial para mantener la integridad y la
confidencialidad del producto. Esto incluye el uso de sistemas de control de versiones seguros, la implementacién de medidas de cifrado y la
gestion adecuada de las claves de cifrado. Ademas, es importante asegurarse de que el cddigo fuente esté almacenado en repositorios seguros y
gue solo el personal autorizado tenga acceso a él. La implementacion de politicas de control de acceso y la auditoria regular de los sistemas de
almacenamiento y distribucién del codigo son practicas recomendadas.

Seguridad del Software

La seguridad del software abarca todas las medidas y practicas implementadas para proteger el software de amenazas y vulnerabilidades. Esto
incluye no solo la codificaciéon seguray la proteccién del cédigo, sino también la implementacidon de controles de seguridad en todas las fases del
ciclo de desarrollo. La adopcion de marcos de seguridad, como OWASP y NIST, proporciona una guia estructurada para asegurar el software.
Ademas, la colaboracién con expertos en seguridad y la participacion en comunidades de seguridad ayudan a mantenerse actualizado con las
mejores practicas y las ultimas amenazas.

Cada uno de estos ensayos ofrece una vision integral de los aspectos clave del desarrollo seguro de software, proporcionando a los profesionales
de Tl y alos auditores gubernamentales una comprensién profunda y detallada de las practicas y principios que deben seguirse para garantizar la
seguridad y calidad del software.

18



Capitulo 6: Como Utilizar la Guia para la Audioria Interna

Capitulo 6

COMO UTILIZAR LA GUIA
PARA LA AUDITORIA INTERNA

19



Capitulo 6: Como Utilizar la Guia para la Audioria Interna

6. COMO UTILIZAR LA GUIA PARA LA AUDITORIA INTERNA

Para que el auditor interno pueda aprovechar al maximo esta publicacién, es conveniente que se refiera a los instrumentos complementarios:
Las preguntas de auditoria tematicas y el modelo de madurez general. Cada GASIC se compone de tres componentes:

Guia de Auditoria de la Seguridad de la Informacion y Ciberseguridad (GASIC):

Este es el cuerpo tedrico y consiste en el marco contextual necesario para que el auditor interno comprenda el
alcance y del dominio de seguridad que esta evaluando. Es un instrumento con los conceptos fundamentales
recopilados de mejores practicas.

Modelo de Madurez:
Recopila controles desde las mejores practicas asociadas al tema central de Guia de Auditoria, organiza los
controles en una propuesta de madurez y permite al auditor conocer los requisitos que deberia evaluar.

®

Ejemplos de Preguntas de Auditoria:

Complementa el modelo de madurez a través de una serie de preguntas organizadas en varios documentos.
Cada documento representa un control que pertenece a uno de los ejes tematicos definidos al interior de la
Guia de Auditoria.

)

Lailustracion a continuacion presenta esta estructura documental:

INFORMACION DE REFERENCIA
Controles
Sectoriales
Mejores Requisitos
Practicas Cumplimiento

‘ Es la base para: ‘

GUIA DE AUDITORIA
DE LA SEGURIDAD DE } MATRIZ DE

LA INFORMACION ) AT
GASIC Contextualiza:

Seilustraen:

EJEMPLOS DE
PREGUNTAS DE
_ AUDITORIA

llustracion n°5. Modo de uso y Estructura Documental GASIC. Fuente: Elaboracion Propia

20



El método de trabajo sugerido es el siguiente:

01

02

03

El auditor interno debe estudiar cada Guia de Auditoria y su contexto para tener plena comprension del tema a trabajar.

A continuacion, puede utilizar el Modelo de Madurez para seleccionar los controles que sean apropiados para la organizacion.

La seleccion de controles debe estar alineados con:

a. Laestrategia de la organizacion.

b. Los resultados de la evaluacion de riesgos.

c. Los requisitos de cumplimiento.

d. La estrategia de auditoria interna, expresada en el plan.

Por ultimo, puede utilizar los documentos de ejemplo para la planificaciéon de las preguntas y pruebas que fuese a realizar.
El formato del programa, plan, instrumentos, pruebas y reporteria debe ser aquel solicitado en el contexto de cada
auditoria, que esta fuera del alcance de esta guia.

NOTA

Los ejemplos de pruebas tienen como propdsito ilustrar la forma en la que los requisitos de los marcos que se
encuentran en el matriz de controles. El auditor puede elegir utilizar un conjunto de estos ejemplos o disenar

sus propias pruebas para evaluar el nivel de cumplimiento de cada control.

En ningun caso, los ejemplos pretenden ser una lista completa; recuerde, debe contextualizar el ejercicio a la

realidad de su organizacion.

21



Ejes tematicos

1.Técnicas de Seguridad: Este eje tiene por objetivo la consideracion de mecanismos de seguridad minimos para establecer una linea base
gue permita a la organizacion desarrollar software mientras minimiza los riesgos.

OBJETIVO ESPECIFICO

CRITERIO DE AUDITORIA

La organizacion dispone de controles de seguridad generales para

1 Implementacion de Entornos Seguros 7 ) -
minimizar los riesgos de los entornos de produccion.
.. . e La organizacion almacena de forma segura el codigo fuente y los
2 Proteccion del Codigo y Software .
elementos de configuracion.
La organizacion define y opera un proceso de validacion en la
3 Codificacion Segura codificacién que observe las mejores practicas y ayude a evitar los

riesgos de seguridad.

Revision y Evaluacion Continua de
Vulnerabilidades y Configuraciones

La organizacion define y opera un proceso de revision de
vulnerabilidades y de configuraciéon para minimizar la probabilidad
de que ocurra un incidente de seguridad.

2.Seguridad en el Proceso de SDLC: Este eje estd enfocado en incorporar buenas practicas de seguridad dentro del ciclo de desarrollo de
software, sin importar el tipo de metodologia que utilice. Observa las practicas basicas de seguridad que buscan minimizar los riesgos de esta

operacion.
OBJETIVO ESPECIFICO CRITERIO DE AUDITORIA

La organizacion define un proceso de desarrollo de software seguro,

1 Definicion del Proceso que considera las necesidades de las partes interesadas, es evaluado,
medido y mejorado consistentemente.
Identificar y documentar todos los requisitos de seguridad para las

2 Definicion de Requisitos de Seguridad infraestructuras y procesos de desarrollo de software de la
organizacion, y mantener los requisitos a lo largo del tiempo.

3 Funciones v Responsabilidades La organizacion define los roles y responsabilidades que deberan

y P dar cuenta de los resultados de la seguridad en SDLC.
. La organizacion define las cadenas de herramientas de operacion

4 Herramientas y Cadenas de Soporte g. . P Y

seguridad que seran utilizadas en el SDLC.
. o La organizacion define, implementa, ejecuta, controla y mejora las

> Pruebas y Verificacion pruebas y mecanismos de verificacion, con foco en la seguridad SDLC.
La organizacion define procedimientos para la evaluacion y analisis

6 Analisis Continuo de Software de los componentes de software una vez han completado el proceso
de desarrollo.

22




