
"Guía GASIC N° 8" - Mayo 2024

DESARROLLO SEGURO
DE SOFTWARE

Guía de Auditoría, Seguridad de la Información y Ciberseguridad N°8

2

Índice

ÍNDICE

12Capítulo 4: Marco Normativo y Estándares de Referencia

Capítulo 1: Introducción al Desarrollo Seguro de Software 4

6Capítulo 2: Metodologías del Ciclo de Desarrollo de Software

Índice 2

8Capítulo 3: DevOps: Un Enfoque Detallado en el Ciclo de Desarrollo de Software

Nota: Presentación 3

Capítulo 6: Uso de la Guía para la Auditoría Interna 19

Capítulo 5: Importancia de la Seguridad en el SDLC

165.1 Planeación y Definición de Requisitos

14

175.2 Herramientas y Entornos de Desarrollo

175.3 Pruebas, Verificación y Mantenimiento

175.4 Codificación y Protección de Software

13

3

PRESENTACIÓN

Nota

En cumplimiento con las instrucciones del Presidente de la República, Gabriel Boric Font, sobre fortalecimiento de la Política de Auditoría Interna
de Gobierno; el Consejo de Auditoría Interna General de Gobierno, entidad asesora en materias de auditoría interna, control interno, probidad,
gestión de riesgos y gobernanza del Supremo Gobierno, presenta a la Red de Auditoría Gubernamental, la GASIC N°8: Desarrollo Seguro de
Software.

Esta guía es parte de una iniciativa del Consejo de Auditoría Interna General de Gobierno (CAIGG) que busca fortalecer la posición del sector
público en materias de Seguridad de la Información y Ciberseguridad, dotando de instrumentos a los Auditores Internos y Servicios Públicos de
instrumentos y herramientas que permitan desarrollar un levantamiento de información en base a las mejores prácticas y la legislación vigente.

Santiago, Mayo 2024.

Daniela Caldana Fulss
Auditora General de Gobierno

Presentación

4

Nota Importante

Estrictamente hablando, Seguridad de la Información y
Ciberseguridad son dos conceptos diferentes.

La “Seguridad de la Información” es la preservación de la
Confidencialidad, Integridad y Disponibilidad de la
Información en los activos de información, en cualquier
medio (incluso, las personas); por otro lado “Ciberseguridad”
hace referencia exclusiva al ciberespacio y activos digitales.

En esta guía adoptamos el concepto de “Seguridad de la
Información y Ciberseguridad”, pero para evitar la
redundancia y el exceso de texto, utilizaremos los conceptos
de “Seguridad de la Información”, “Ciberseguridad” o el
acrónimo “SIC” como sinónimos para mejorar la comprensión
lectora.

En el contexto actual, donde la ciberseguridad se ha convertido
en una preocupación primordial, el desarrollo seguro de
software emerge como una disciplina crítica para proteger los
sistemas y datos sensibles de las organizaciones
gubernamentales. La creciente sofisticación de las amenazas
cibernéticas y la dependencia de sistemas digitales para
operaciones críticas requieren un enfoque riguroso y sistemático
para asegurar que el software desarrollado y adquirido sea
intrínsecamente seguro.
El desarrollo seguro de software no es un proceso aislado, sino
que debe integrarse a lo largo de todo el ciclo de vida del
desarrollo, desde la concepción y planificación hasta el
despliegue y mantenimiento. Este enfoque integral garantiza que
cada etapa del proceso de desarrollo considere y mitigue los
riesgos de seguridad, promoviendo la resiliencia y la confianza en
los sistemas de información

INTRODUCCIÓN AL
DESARROLLO SEGURO
DE SOFTWARE

Capítulo 1

Capítulo 1: Introducción al Desarrollo Seguro de Software

El ciclo de desarrollo de software, también conocido como ciclo de vida del desarrollo de software (SDLC, por sus siglas en inglés), es un
marco que define las fases que un proyecto de software sigue desde su inicio hasta su finalización. Este ciclo es esencial para la creación
de software de alta calidad que cumpla con los requisitos del cliente y sea seguro, eficiente y mantenible. A continuación, se presenta un
análisis detallado de las fases del SDLC, sus metodologías, y la importancia de cada una en el contexto del desarrollo seguro de software.

El Ciclo de Desarrollo de Software: Un Análisis Detallado

El SDLC se compone de varias fases clave, cada una de las cuales desempeña un papel crucial en el desarrollo del software.
Aunque los detalles pueden variar dependiendo de la metodología específica utilizada, las fases comunes incluyen:

Fases del Ciclo de Desarrollo de Software

Planificación y Análisis de Requisitos1.

Diseño del Sistema2.

Desarrollo y Codificación3.

Pruebas4.

Despliegue5.

Mantenimiento y Soporte6.

Capítulo 2: Tipos de Seguridad

5

Capítulo 1: Introducción al Desarrollo Seguro de Software

La fase de planificación es la etapa inicial del SDLC, donde se define el alcance del proyecto y se identifican los objetivos principales.
Durante esta fase, se lleva a cabo un análisis detallado de los requisitos del cliente y del sistema, incluyendo requisitos funcionales y
no funcionales. Es fundamental involucrar a todas las partes interesadas para asegurar que se entienden claramente las expectativas
y restricciones del proyecto.

En el contexto del desarrollo seguro de software, esta fase debe incluir la identificación de requisitos de seguridad específicos, tales
como la protección de datos, la gestión de identidades y accesos, y la conformidad con normativas y estándares de seguridad.

1. Planificación y Análisis de Requisitos

En la fase de diseño, se crea una arquitectura detallada del sistema que cumple con los requisitos definidos. Esta arquitectura abarca tanto
el diseño del software como el hardware necesario para soportarlo. Se desarrollan diagramas de flujo, modelos de datos y otros documentos
técnicos que guían la implementación del sistema.

El diseño seguro del software debe considerar principios como la defensa en profundidad, el principio del mínimo privilegio y la separación
de funciones. También es crucial definir controles de seguridad que se integren en la arquitectura del sistema.

2. Diseño del Sistema

La fase de desarrollo es donde se escribe el código del software siguiendo el diseño establecido. Los desarrolladores traducen los diagramas
y especificaciones técnicas en un lenguaje de programación específico. Es durante esta fase que se construye el núcleo funcional del software.

Para garantizar la seguridad del software, es esencial seguir prácticas de codificación segura, como la validación de entradas, la gestión
adecuada de errores y excepciones, y la utilización de bibliotecas y componentes seguros. La revisión de código y la aplicación de análisis
estáticos y dinámicos son prácticas recomendadas para identificar y mitigar vulnerabilidades durante esta fase.

3. Desarrollo y Codificación

La fase de pruebas es crítica para asegurar que el software funciona según lo previsto y que cumple con los requisitos especificados. Las
pruebas pueden incluir pruebas unitarias, pruebas de integración, pruebas del sistema y pruebas de aceptación del usuario. Cada tipo de
prueba tiene como objetivo detectar errores y garantizar que el software es robusto y fiable.

Las pruebas de seguridad, como las pruebas de penetración y los análisis de vulnerabilidades, son componentes esenciales de esta fase.
Estas pruebas ayudan a identificar posibles fallos de seguridad antes de que el software sea desplegado en un entorno de producción.

4. Pruebas

Una vez que el software ha pasado todas las pruebas y ha sido aprobado, se despliega en el entorno de producción. La fase de despliegue
puede implicar la instalación del software en los servidores, la configuración del entorno y la capacitación de los usuarios finales.

El despliegue seguro del software debe incluir la implementación de controles de acceso, la configuración segura del entorno y la
preparación de planes de respuesta ante incidentes. Es fundamental asegurarse de que todas las dependencias y componentes del sistema
estén actualizados y configurados adecuadamente.

5. Despliegue

El mantenimiento es la fase final del SDLC, pero no por ello menos importante. Incluye la corrección de errores que no fueron detectados
durante las pruebas, la implementación de nuevas funcionalidades y la actualización del software para adaptarse a cambios en el entorno o
en los requisitos del usuario.

El mantenimiento seguro del software requiere una gestión continua de vulnerabilidades, la aplicación regular de parches de seguridad y la
realización de auditorías de seguridad periódicas. También es esencial monitorear el software en busca de comportamientos anómalos y
responder rápidamente a cualquier incidente de seguridad.

6. Mantenimiento y Soporte

METODOLOGÍAS DEL CICLO
DE DESARROLLO DE SOFTWARE

Capítulo 2

6

Capítulo 2: Metodologías del Ciclo de Desarrollo de Software

7

Capítulo 2: Metodologías del Ciclo de Desarrollo de Software

Existen varias metodologías que guían el SDLC, cada una con sus propias ventajas y desventajas. Las más comunes incluyen:

2. METODOLOGÍAS DEL CICLO DE DESARROLLO DE SOFTWARE

La metodología en cascada es un enfoque secuencial donde cada fase del SDLC debe completarse antes de pasar a la siguiente.
Aunque es fácil de entender y gestionar, puede ser rígida y no permite cambios fáciles una vez que una fase ha concluido.

Cascada (Waterfall)

Agile es una metodología iterativa y flexible que promueve el desarrollo incremental y la colaboración constante con el cliente. Las
fases del SDLC se repiten en ciclos cortos llamados "sprints", lo que permite adaptarse rápidamente a los cambios en los requisitos.

Agile

DevOps es una práctica que combina el desarrollo de software (Dev) y las operaciones de TI (Ops) para mejorar la colaboración y la
eficiencia. DevOps enfatiza la automatización y la integración continua, lo que permite una entrega de software más rápida y fiable.

DevOps

Cascada

(Waterfall)

Descripción VentajasMetodología

Enfoque secuencial donde cada

fase debe completarse antes de

pasar a la siguiente.

Agile

DevOps

Claridad y estructura.

Documentación extensa;

Facilidad de gestión

Desventajas

Rigidez;

Riesgo de problemas tardíos;

Poca flexibilidad

Metodología iterativa y flexible

con ciclos cortos llamados

‘Sprints’.

Flexibilidad;

Colaboración y comunicación;

Entrega continua.

Falta de documentación formal;

Requiere disciplina;

Incertidumbre.

Práctica que combina desarrollo y

operaciones para mejorar la

colaboración y eficiencia.

Entrega rápida y continua;

Mejora la colaboración;

Alta fiabilidad.

Complejidad inicial;

Cambio cultural;

Requiere alta automatización.

Nota Importante Existen otras metodologías de desarrollo de software, pero no es el alcance de esta guía su análisis.

METODOLOGÍA
TRADICIONAL

Tie
m

po

Alcance

C
osto

METODOLOGÍA
ÁGIL

Tie
m

po

Alcance

C
osto

V/S
Rigidez

Características

Negociación de Contrato

Procesos y Herramientas

Documentación Comprensiva

Seguimiento al Plan

Procesos muy Controlados

Grupos de Gran Tamaño

Flexibilidad

Características

Colaboración del Cliente

Personas e Interacción

Software Funcionando

Adaptarse a los Cambios

Procesos menos Controlados

Grupos Pequeños In-situ

8

Capítulo 3: DevOps, Un Enfoque Detallado en el Ciclo de Desarrollo de Software

DEVOPS: UN ENFOQUE DETALLADO EN EL
CICLO DE DESARROLLO DE SOFTWARE

Capítulo 3

9

Capítulo 3: DevOps, Un Enfoque Detallado en el Ciclo de Desarrollo de Software

3. DEVOPS: ENFOQUE DETALLADO DEL CICLO DE DESARROLLO DE
SOFTWARE

En el dinámico panorama tecnológico actual, DevOps ha emergido como una práctica revolucionaria que integra el desarrollo de software (Dev) y
las operaciones de TI (Ops). Este enfoque tiene como objetivo mejorar la colaboración, la eficiencia y la velocidad de entrega mediante la
automatización y la integración continua.

Principios Fundamentales de DevOps

DevOps se basa en varios principios clave que transforman la manera en que se desarrollan y gestionan las aplicaciones:

Colaboración y Comunicación
La esencia de DevOps radica en la estrecha colaboración entre los equipos de desarrollo y operaciones.
Esta metodología rompe los silos tradicionales, promoviendo una comunicación fluida y alineación de objetivos.

Automatización
La automatización es el pilar central de DevOps, permitiendo acelerar los procesos de desarrollo, pruebas y
despliegue. Las herramientas de integración y entrega continua (CI/CD) automatizan la construcción, prueba y
despliegue del software, garantizando una entrega rápida y eficiente.

02

Integración Continua (CI)
La integración continua implica la integración frecuente del código de todos los desarrolladores en un repositorio
compartido. Cada integración se verifica automáticamente mediante pruebas unitarias y de integración, asegurando
que el nuevo código no rompa la funcionalidad existente.

03

Entrega Continua (CD)
La entrega continua extiende la integración continua al despliegue automático de cada cambio que pasa las pruebas
en un entorno de producción. Esto permite que el software sea entregado a los usuarios finales de manera rápida y
frecuente, con mínimas interrupciones.

04

Monitoreo y Registro Continuo
El monitoreo continuo de aplicaciones e infraestructura permite la detección proactiva de problemas.
Los registros detallados ayudan a identificar y resolver problemas rápidamente, mejorando la estabilidad y el
rendimiento del software.

05

Infraestructura como Código (IaC)
IaC permite gestionar y aprovisionar la infraestructura mediante scripts de configuración automatizados, en lugar de
procesos manuales.

06

01

Capítulo 2: Modelos de Servicio en la Nube

10

Capítulo 3: DevOps, Un Enfoque Detallado en el Ciclo de Desarrollo de Software

Desarrollo Iterativo vs Incremental

=

1 2 3

Incremental

=

1 2 3

Iterativo

Cuatro Flores

Rosadas Sobre

Fondo Gris

Beneficios de DevOps

La adopción de DevOps ofrece múltiples beneficios que transforman positivamente el ciclo de desarrollo de software:

DevOps permite ciclos de desarrollo más cortos y tiempos de entrega más rápidos, facilitando la respuesta ágil
a las necesidades del mercado y del cliente. La capacidad de implementar cambios rápidamente reduce el
tiempo de comercialización y mejora la competitividad.

1. Velocidad y Agilidad

Las prácticas de pruebas automatizadas y el monitoreo continuo aseguran que el software sea robusto y fiable.
La integración continua detecta errores en las primeras etapas del desarrollo, reduciendo los defectos en la
producción.

2. Calidad y Fiabilidad

DevOps mejora la colaboración entre equipos, promoviendo una cultura de responsabilidad compartida por la
calidad y el éxito del producto. Las prácticas colaborativas y la transparencia en los procesos fomentan un
sentido de propiedad y compromiso entre los miembros del equipo.

4. Colaboración y Responsabilidad

IaC y la automatización aseguran que la infraestructura sea escalable y consistente, facilitando la gestión de
entornos grandes y complejos. Los entornos reproducibles eliminan los problemas relacionados con
configuraciones inconsistentes.

3. Escalabilidad y Consistencia

11

Capítulo 3: DevOps, Un Enfoque Detallado en el Ciclo de Desarrollo de Software

Herramientas y Tecnologías DevOps

Diversas herramientas facilitan la implementación de DevOps, cada una con un propósito específico:

Git: Sistema de control de versiones distribuido que facilita la gestión del código fuente y la colaboración entre desarrolladores.

Subversion (SVN): Alternativa a Git, más tradicional y centralizado.

Git: Sistema de control de versiones distribuido que facilita la gestión del código fuente y la colaboración entre desarrolladores.

Subversion (SVN): Alternativa a Git, más tradicional y centralizado.

1. Control de Versiones

Jenkins: Herramienta de automatización de código abierto que soporta CI/CD.

Travis CI: Servicio de CI basado en la nube para proyectos alojados en GitHub.

2. Integración y Entrega Continua

CircleCI: Plataforma de CI/CD que automatiza la construcción, prueba y despliegue de software.

Terraform: Herramienta de IaC que permite la provisión de infraestructura en múltiples proveedores de servicios en la nube.

Ansible: Plataforma de automatización de TI que gestiona la configuración y el despliegue de aplicaciones.

3. Gestión de Configuración e Infraestructura como Código

Chef/Puppet: Herramientas de gestión de configuración que automatizan la configuración y administración de servidores.

Prometheus: Sistema de monitoreo y alerta diseñado para la fiabilidad y la escalabilidad.

ELK Stack (Elasticsearch, Logstash, Kibana): Conjunto de herramientas para búsqueda, análisis y visualización de datos generados por
máquinas en tiempo real.

4. Monitoreo y Registro

Grafana: Plataforma de código abierto para la visualización y análisis de datos.

12

Capítulo 4: Marco Normativo y Estándares de Referencia

4. MARCO NORMATIVO Y
ESTÁNDARES DE REFERENCIA

Capítulo 4

13

Capítulo 4: Marco Normativo y Estándares de Referencia

4. MARCO NORMATIVO Y ESTÁNDARES DE REFERENCIA
Para guiar este proceso, existen múltiples estándares y marcos de referencia que proporcionan directrices y mejores prácticas. Entre los más
reconocidos se encuentran ISO/IEC 27034, OWASP Software Assurance Maturity Model (SAMM), y el NIST Special Publication 800-218,
también conocido como Secure Software Development Framework (SSDF).

ISO/IEC 27034

La norma ISO/IEC 27034 proporciona un marco comprensivo para integrar la seguridad en el proceso de desarrollo de software. Este estándar
define un conjunto de prácticas organizativas, documentales y técnicas que ayudan a las organizaciones a asegurar que sus aplicaciones de
software son desarrolladas con la seguridad en mente. La ISO/IEC 27034 enfatiza la importancia de considerar la seguridad desde las etapas
iniciales del desarrollo, estableciendo controles y medidas que deben ser implementadas de manera continua.

OWASP SAMM

El OWASP Software Assurance Maturity Model (SAMM) es un modelo de madurez que permite a las organizaciones evaluar y mejorar sus
prácticas de desarrollo de software seguro. SAMM proporciona un enfoque estructurado para medir el estado actual de las prácticas de seguridad
del software y planificar mejoras. El modelo se organiza en varias categorías, incluyendo gobernanza, diseño, implementación, verificación y
despliegue, cada una con actividades específicas que promueven la seguridad en el desarrollo.

NIST SP 800-218 (SSDF)

El NIST Special Publication 800-218, también conocido como Secure Software Development Framework (SSDF), ofrece un conjunto de prácticas
de desarrollo seguro que las organizaciones pueden integrar en sus procesos de desarrollo de software. El SSDF proporciona directrices
detalladas sobre cómo gestionar la seguridad a lo largo del ciclo de vida del desarrollo de software, incluyendo la planificación, implementación,
verificación y respuesta a incidentes. Este marco es particularmente relevante para las organizaciones gubernamentales, ya que se alinea con las
políticas y requisitos de seguridad federales.

Relevancia para los Auditores Gubernamentales

Para los auditores gubernamentales, la comprensión y evaluación de las prácticas de desarrollo seguro de software es esencial para garantizar la
protección de los sistemas y datos críticos. La aplicación de estos estándares y marcos de referencia permite a los auditores verificar que las
organizaciones están adoptando medidas adecuadas para mitigar los riesgos de seguridad. Además, proporciona un lenguaje común y un conjunto
de expectativas que facilitan la comunicación y la colaboración entre equipos de desarrollo, seguridad y auditoría.

14

Capítulo 5: Importancia de la Seguridad en el SDLC

IMPORTANCIA DE LA
SEGURIDAD EN EL SDLC

Capítulo 5

Planeación y Definición de Requisitos

Definición del Proceso, Definición de Requisitos de Seguridad, Funciones y Responsabilidades.

Herramientas y Entornos de Desarrollo

Cadenas de Soporte, Implementación de Entornos Seguros, Arquitectura de Software: Construcción, Despliegue y Seguimiento.

 Pruebas, Verificación y Mantenimiento

Pruebas y Verificación, Revisión y Evaluación Continua de Vulnerabilidades, Funcionalidad de Software Existente.

Codificación y Protección de Software

Codificación Segura, Protección del Código y Software, Seguridad del Software.

15

Capítulo 5: Importancia de la Seguridad en el SDLC

5. IMPORTANCIA DE LA SEGURIDAD EN EL SDLC
La integración de la seguridad en cada fase del SDLC es esencial para desarrollar software robusto y resistente a ataques. Para esta guía,
considerando las fuentes seleccionadas, se han definido un conjunto de temas que no son excluyentes de nuevas tendencias o futuras
actualizaciones. Estos temas son:

Cada uno de estos temas está desarrollado en la Matriz de Controles de esta Guía, y su principal contenido se describe a continuación:

Fases

SDLC

Tareas

Hechas

Requrimiento Diseño Programación Pruebas e Integración Lanzamiento

Comienzo

Obtención

Elaboración

Negociación

Especificaciones

Validación

Gestión

Identificar los
Activos de Diseño

 Abstraer
Especificaciones

Diseño de
Componentes

Diseño de
Interface

Diseño de
Base de Datos

Elegir un Lenguaje
de Programación

 Clasificaciones
de Módulo

Elegir Herramientas
de Programación

Considerar las
Opciones de Reutilización

Iniciar
Pruebas

 Pruebas del
Sistema

Pruebas de
Aceptación

Pruebas de
Integración

Mantenimiento
Correctivo

 Mantenimiento
Adaptativo

 Mantenimiento
de Perfeccionamiento

Mantenimiento
Preventivo

Posibles

Problemas

Seguridad

Comprensión
Compartida de los
Requisitos.

Obtención de
Requisitos de
Seguridad.

Falta de Defensa
en Profundidad.

Falta de Conciencia
de Seguridad.

Establecer Requisitos
Seguridad del Diseño

Evaluar Riesgos de
los Componentes de
Terceros

Trazabilidad

Control de Accesos

Falta de Defensa
en Profundidad.

Falta de Conciencia
de Seguridad.

Defectos de Diseño

Desbordamiento
del Buffer

Falla de Inyección
de Código

Falta de Uso

Prácticas de
Codificación Segura

Falta de Seguridad

Conciencia

Evaluar Riesgos de
los Componentes de
Terceros

Selección de
Herramientas

Utilizar Múltiples
Enfoques

Aceptación y
Resistencia

Problemas de
Cumplimiento

Presupuesto y
Tiempo

Restricciones

Riesgos Técnicos

Posibilidad de
Mala Configuración

Posibilidad de
Defectos

Prácticas

Mitigación

Todas las Partes
Interesadas Deben
Estar de Acuerdo con
las Definiciones de
Requisitos

Identificar Activos
Vulnerables y Críticos

Identificar las
Dependencias de
Requisitos

Economía de
Mecanismo

Falso - Seguro
por Defecto

Control de Accesos

Mínimos Privilegios

Mecanismos Menos
Comunes

Aceptabilidad
Psicológica

Codificación Segura

OSWAP Prácticas de
Codificación Segura y
Lista de Verificación

OSWAP Prácticas de
Codificación General

Programación de
Pares

Pruebas e Integración
Seguras

Los Casos de Prueba
Deben ser Generados
en Base a la Salida de
la Fase RE

Pruebas Funcionales

Pruebas No
Funcionales

Pruebas de
Integración

Proceso de Gestión
de Cambios de
Documentos

Seguir el Proceso de
Gestión de Cambios

Requrimiento Diseño Programación Pruebas e Integración Lanzamiento

Identificar Amenazas

Desarrollar los
Artefactos
Correspondientes

Obtener Requisitos
de Seguridad

Realizar Requisitos
Priorización y
Clasificación

Realizar Requisitos
de Inspección

Actualizar el
Repositorio de
Requerimientos

Defensa en
Profundidad

Revisión de Diseño

Planificar Recursos
de Apoyo

16

Capítulo 5: Importancia de la Seguridad en el SDLC

Ilustración 1 Esquema General de Identificacion de Requisitos

5.1 PLANEACIÓN Y DEFINICIÓN DE REQUISITOS

El proceso de desarrollo de software comienza con una planificación meticulosa. Esta fase inicial es crucial, ya que establece el rumbo del proyecto.
Aquí, se delinean los objetivos, se identifican los recursos necesarios y se elaboran los cronogramas. Una planificación efectiva no solo se enfoca
en los aspectos técnicos, sino que también considera las necesidades y expectativas del cliente. Se trata de una fase donde la comunicación abierta
y clara con todas las partes interesadas es fundamental para asegurar que todos los involucrados comprendan el alcance y los objetivos del
proyecto.

Definición del Proceso

Definir los requisitos de seguridad desde el principio es esencial para proteger los datos y las operaciones de los usuarios finales. Estos requisitos
deben ser específicos y detallados, abordando aspectos como la protección de datos sensibles, la autenticación de usuarios y la resistencia a
ataques externos. La inclusión de expertos en seguridad durante esta fase es vital para identificar posibles vulnerabilidades y desarrollar
estrategias para mitigarlas. Este enfoque proactivo ayuda a prevenir problemas de seguridad que podrían surgir más adelante en el ciclo de
desarrollo.

Definición de Requisitos de Seguridad

Asignar roles y responsabilidades claras dentro del equipo de desarrollo es esencial para el éxito del proyecto. Cada miembro del equipo debe
conocer sus responsabilidades y entender cómo su trabajo contribuye al objetivo final. Esto incluye no solo a los desarrolladores, sino también a
los gerentes de proyecto, analistas de negocios, ingenieros de seguridad y demás stakeholders. Un organigrama bien definido y una comunicación
constante aseguran que todas las tareas críticas se manejen de manera eficiente y que cualquier problema se pueda abordar rápidamente.

Funciones y Responsabilidades

17

Capítulo 5: Importancia de la Seguridad en el SDLC

5.2 HERRAMIENTAS Y ENTORNOS DE DESARROLLO

El uso de herramientas adecuadas en el desarrollo de software puede marcar una gran diferencia en la eficiencia y calidad del producto final. Las
herramientas de gestión de versiones, integración continua y automatización de pruebas son esenciales para mantener el código limpio y
funcional. Además, las herramientas de seguimiento de errores y gestión de proyectos ayudan a los equipos a mantenerse organizados y
enfocados. La elección correcta de estas herramientas debe basarse en las necesidades específicas del proyecto y en la experiencia del equipo con
dichas herramientas.

Herramientas y Cadenas de Soporte

Crear entornos seguros para el desarrollo y prueba es fundamental para proteger el código y los datos durante el ciclo de vida del proyecto. Esto
implica no solo asegurar los servidores y redes, sino también implementar políticas de acceso estrictas y utilizar herramientas de cifrado. Los
entornos de desarrollo deben ser lo más similares posible a los entornos de producción para evitar sorpresas al desplegar el software. Además, es
importante realizar auditorías de seguridad periódicas para identificar y corregir posibles vulnerabilidades.

Implementación de Entornos Seguros

La arquitectura del software es la columna vertebral de cualquier aplicación exitosa. Una buena arquitectura debe ser escalable, flexible y fácil de
mantener. Durante la fase de construcción, es crucial seguir principios de diseño sólidos y mejores prácticas de codificación. El despliegue debe ser
automatizado para minimizar errores humanos y asegurar una entrega rápida y fiable. El seguimiento continuo de la aplicación, mediante
herramientas de monitoreo, permite detectar y resolver problemas en tiempo real, garantizando así un rendimiento óptimo y una alta
disponibilidad.

Arquitectura de Software: Construcción, Despliegue y Seguimiento

5.3 PRUEBAS, VERIFICACIÓN Y MANTENIMIENTO

Las pruebas y la verificación son etapas críticas en el ciclo de desarrollo de software. Las pruebas unitarias, de integración y de sistema aseguran
que cada componente del software funcione correctamente y que todos los componentes interactúen de manera adecuada. Las pruebas de
aceptación por parte del usuario final validan que el software cumple con los requisitos especificados. Además, las pruebas de seguridad ayudan a
identificar vulnerabilidades que podrían ser explotadas por atacantes. Un enfoque sistemático y exhaustivo en las pruebas es vital para garantizar
un software de alta calidad y libre de errores.

Pruebas y Verificación

La seguridad del software no es un evento único, sino un proceso continuo. Las revisiones periódicas y la evaluación constante de vulnerabilidades
son esenciales para mantener la seguridad del software a lo largo del tiempo. Esto incluye realizar auditorías de código, pruebas de penetración y
análisis de vulnerabilidades regularmente. Además, es importante mantenerse actualizado con las últimas amenazas y técnicas de ataque para
poder adaptar las medidas de seguridad en consecuencia. La implementación de programas de divulgación de vulnerabilidades también puede ser
beneficiosa para identificar y corregir problemas rápidamente.

Revisión y Evaluación Continua de Vulnerabilidades

El mantenimiento del software existente es tan importante como el desarrollo de nuevas funcionalidades. Esto implica no solo corregir errores y
aplicar parches de seguridad, sino también mejorar y optimizar el rendimiento del software. La monitorización continua y la retroalimentación de
los usuarios son esenciales para identificar áreas de mejora. Además, es crucial planificar y gestionar las actualizaciones de software de manera
que minimicen la interrupción del servicio y aseguren la continuidad del negocio.

Funcionalidad de Software Existente

5.4 CODIFICACIÓN Y PROTECCIÓN DE SOFTWARE

La codificación segura es fundamental para prevenir vulnerabilidades que puedan ser explotadas por atacantes. Esto incluye seguir prácticas de
codificación seguras, como la validación de entradas, la gestión adecuada de errores y excepciones, y la implementación de controles de acceso
adecuados. Los desarrolladores deben ser conscientes de las amenazas comunes y cómo mitigarlas mediante técnicas de codificación. La
educación continua y la formación en seguridad son esenciales para mantener un alto nivel de competencia en este campo.

Codificación Segura

18

Capítulo 5: Importancia de la Seguridad en el SDLC

Proteger el código fuente y el software contra el acceso no autorizado y la manipulación es crucial para mantener la integridad y la
confidencialidad del producto. Esto incluye el uso de sistemas de control de versiones seguros, la implementación de medidas de cifrado y la
gestión adecuada de las claves de cifrado. Además, es importante asegurarse de que el código fuente esté almacenado en repositorios seguros y
que solo el personal autorizado tenga acceso a él. La implementación de políticas de control de acceso y la auditoría regular de los sistemas de
almacenamiento y distribución del código son prácticas recomendadas.

Protección del Código y Software

La seguridad del software abarca todas las medidas y prácticas implementadas para proteger el software de amenazas y vulnerabilidades. Esto
incluye no solo la codificación segura y la protección del código, sino también la implementación de controles de seguridad en todas las fases del
ciclo de desarrollo. La adopción de marcos de seguridad, como OWASP y NIST, proporciona una guía estructurada para asegurar el software.
Además, la colaboración con expertos en seguridad y la participación en comunidades de seguridad ayudan a mantenerse actualizado con las
mejores prácticas y las últimas amenazas.
Cada uno de estos ensayos ofrece una visión integral de los aspectos clave del desarrollo seguro de software, proporcionando a los profesionales
de TI y a los auditores gubernamentales una comprensión profunda y detallada de las prácticas y principios que deben seguirse para garantizar la
seguridad y calidad del software.

Seguridad del Software

19

Capítulo 6: Como Utilizar la Guía para la Audioría Interna

CÓMO UTILIZAR LA GUÍA
PARA LA AUDITORÍA INTERNA

Capítulo 6

EJEMPLOS DE
PREGUNTAS DE

AUDITORÍA

GUÍA DE AUDITORÍA
DE LA SEGURIDAD DE

 LA INFORMACIÓN
GASIC

MATRÍZ DE
CONTROLES

Se ilustra en:Contextualiza:

Es la base para:

Normas
ISO

Controles
Sectoriales

Mejores
Prácticas

Requisitos
Cumplimiento

INFORMACIÓN DE REFERENCIA

Ilustración n°5. Modo de uso y Estructura Documental GASIC. Fuente: Elaboración Propia

1 2

3

Para que el auditor interno pueda aprovechar al máximo esta publicación, es conveniente que se refiera a los instrumentos complementarios:
Las preguntas de auditoría temáticas y el modelo de madurez general. Cada GASIC se compone de tres componentes:

6. CÓMO UTILIZAR LA GUÍA PARA LA AUDITORÍA INTERNA

20

Capítulo 6: Como Utilizar la Guía para la Audioría Interna

Guía de Auditoría de la Seguridad de la Información y Ciberseguridad (GASIC):

Este es el cuerpo teórico y consiste en el marco contextual necesario para que el auditor interno comprenda el

alcance y del dominio de seguridad que está evaluando. Es un instrumento con los conceptos fundamentales

recopilados de mejores prácticas.

Modelo de Madurez:

Recopila controles desde las mejores prácticas asociadas al tema central de Guía de Auditoría, organiza los

controles en una propuesta de madurez y permite al auditor conocer los requisitos que debería evaluar.

Ejemplos de Preguntas de Auditoría:

Complementa el modelo de madurez a través de una serie de preguntas organizadas en varios documentos.

Cada documento representa un control que pertenece a uno de los ejes temáticos definidos al interior de la

Guía de Auditoría.

La ilustración a continuación presenta esta estructura documental:

 Los ejemplos de pruebas tienen como propósito ilustrar la forma en la que los requisitos de los marcos que se

encuentran en el matriz de controles. El auditor puede elegir utilizar un conjunto de estos ejemplos o diseñar

sus propias pruebas para evaluar el nivel de cumplimiento de cada control.

 En ningun caso, los ejemplos pretenden ser una lista completa; recuerde, debe contextualizar el ejercicio a la

realidad de su organización.

NOTA

El auditor interno debe estudiar cada Guía de Auditoría y su contexto para tener plena comprensión del tema a trabajar. 01

A continuación, puede utilizar el Modelo de Madurez para seleccionar los controles que sean apropiados para la organización.

La selección de controles debe estar alineados con: 02

a.
b.
c.
d.

La estrategia de la organización.

Los resultados de la evaluación de riesgos.

Los requisitos de cumplimiento.

La estrategia de auditoría interna, expresada en el plan.

Por último, puede utilizar los documentos de ejemplo para la planificación de las preguntas y pruebas que fuese a realizar.

El formato del programa, plan, instrumentos, pruebas y reportería debe ser aquel solicitado en el contexto de cada

auditoría, que está fuera del alcance de esta guía.
03

El método de trabajo sugerido es el siguiente:

21

Capítulo 6: Como Utilizar la Guía para la Audioría Interna

22

Ejes temáticos

Ejes temáticos

Implementación de Entornos Seguros1

Protección del Código y Software2

Codificación Segura3

Revisión y Evaluación Continua de
Vulnerabilidades y Configuraciones

4

OBJETIVO ESPECÍFICO CRITERIO DE AUDITORÍA

La organización dispone de controles de seguridad generales para

minimizar los riesgos de los entornos de producción.

La organización almacena de forma segura el código fuente y los

elementos de configuración.

La organización define y opera un proceso de validación en la

codificación que observe las mejores prácticas y ayude a evitar los

riesgos de seguridad.

La organización define y opera un proceso de revisión de

vulnerabilidades y de configuración para minimizar la probabilidad

de que ocurra un incidente de seguridad.

1.Técnicas de Seguridad: Este eje tiene por objetivo la consideración de mecanismos de seguridad mínimos para establecer una línea base
que permita a la organización desarrollar software mientras minimiza los riesgos.

Definición del Proceso1

Definición de Requisitos de Seguridad 2

Funciones y Responsabilidades3

Herramientas y Cadenas de Soporte4

OBJETIVO ESPECÍFICO CRITERIO DE AUDITORÍA

La organización define un proceso de desarrollo de software seguro,

que considera las necesidades de las partes interesadas, es evaluado,

medido y mejorado consistentemente.

Identificar y documentar todos los requisitos de seguridad para las

infraestructuras y procesos de desarrollo de software de la

organización, y mantener los requisitos a lo largo del tiempo.

La organización define los roles y responsabilidades que deberán

dar cuenta de los resultados de la seguridad en SDLC.

La organización define las cadenas de herramientas de operación y

seguridad que serán utilizadas en el SDLC.

2. Seguridad en el Proceso de SDLC: Este eje está enfocado en incorporar buenas prácticas de seguridad dentro del ciclo de desarrollo de
software, sin importar el tipo de metodología que utilice. Observa las prácticas básicas de seguridad que buscan minimizar los riesgos de esta
operación.

Pruebas y Verificación5
La organización define, implementa, ejecuta, controla y mejora las

pruebas y mecanismos de verificación, con foco en la seguridad SDLC.

Análisis Continuo de Software6

La organización define procedimientos para la evaluación y análisis

de los componentes de software una vez han completado el proceso

de desarrollo.

